Generación de imágenes mediante un algoritmo neuroevolutivo

Gracias a mi recientemente adquirido conocimiento sobre cómo mostrar cosas en la pantalla mediante OpenGL, he vuelto a implementar en Python un experimento que hace años implementé en Java: un algoritmo que genera imágenes mediante el método de neuroevolución NEAT inventado a mediados de los 2000s. Cuando lo implementé en Java, tuve que programar el método NEAT desde cero tirando de los artículos científicos, porque las librerías de Java existentes en ese momento no me inspiraban mucha confianza. Por fortuna hoy en día y en Python existen un par de paquetes muy sólidos que me libran de esa responsabilidad.

Empiezo enseñando un vídeo de seis minutos que muestra imágenes generadas a lo largo de varios procesos evolutivos independientes:

Un fenómeno curioso, aunque lógico, de los resultados de la neuroevolución programada se asemeja a lo que pasa en la natural: cuando algún patrón surge cerca del comienzo de la evolución, y por un motivo u otro beneficia al genoma, tiende a perpetuarse durante el resto de la evolución en diferentes formas (por ejemplo, la columna vertebral en los seres vivos).

El experimento funciona de la siguiente manera: se genera una población de unos 100 genomas que contienen los nodos y las conexiones de una red neural. Cuando se necesite activarla, se le pasarán dos valores: la coordenada x dividida entre la anchura de la resolución que la imagen tendrá, y la coordenada y dividida entre la altura de la resolución que la imagen tendrá. Tras el cálculo interno, la red neural produce los cuatro componentes de un color RGBA: el valor para el rojo, para el verde, para el azul, y para la transparencia.

Cuando implementé este experimento por primera vez en Java hace años, yo programé que cada genoma de cada generación produjera una imagen de 32 por 32 píxeles que guardaba en el disco duro. Yo tendría que elegir a mano cuáles me interesaran y añadirlos a otra carpeta, de los que el programa leería al iniciarse la siguiente vez, y sólo consideraría esos genomas elegidos para comenzar otra evolución. Sin embargo, aun entonces yo sabía que estaba sacrificando información vital para que la segunda evolución con genomas anteriores funcionara de la manera adecuada: los genomas guardan información sobre cuándo surgieron por primera vez sus nodos y conexiones, además de a qué especie pertenecen. Ambas informaciones son vitales cuando los genomas se reproducen. Por aquel entonces a mí no se me ocurría cómo implementarlo adecuadamente. En esta ocasión me planteé solucionarlo lo antes posible para la nueva versión en Python, pero acabé llegando a la conclusión de que no sólo habría que guardar los genomas queridos, sino también todas las especies y la generación a la que pertenecen, así que he optado por permitir que el usuario salve una generación entera, todos los genomas y las especies a los que pertenecen. Es el equivalente de salvar la partida y volver a cargarla.

Además, el código dibuja en la pantalla la imagen en 32×32 píxeles que cada genoma produce. Al revés que en mi pasada implementación en Java, en la que los genomas se promovían dependiendo de lo novedosos que fueran, ahora se le da la responsabilidad al usuario de seleccionar los genomas que quiere promover en la evolución. Cuando decida pasar a la siguiente generación, el algoritmo puntua de manera descendiente dependiendo del orden en el que el usuario ha seleccionado los genomas.

He grabado 100 generaciones de este proceso en el siguiente vídeo:

Los genomas empiezan o completamente desconectados o parcialmente conectados a los nodos de salida; lo he configurado para que exista una posibilidad del 10% de que cada conexión esté presente nada más empezar. Eso hace que algunos genomas no produzcan ningún color, o que salgan completamente negros. Sin embargo, en la primera generación ya se presentan patrones diferentes: barras verticales, diagonales con distorsiones, y gradientes. Sólo transcurren cinco generaciones hasta que tres genomas conectan con el nodo de salida verde. Sin embargo, de manera curiosa, es sólo en la generación 26 cuando un genoma conecta con el nodo de salida azul. Una mezcla de ambos acaba dominando la evolución, y faltan por entero, o casi, genomas que contemplen la salida roja.

Dado que la red neural que un genoma forma debe ejecutarse 32 * 32 veces (1024 veces) sólo para generar la textura que luego plasmo en la pantalla, no era factible generar durante la grabación las imágenes grandes que incluyo en los otros vídeos, ya que la resolución de 1080 por 1080 píxeles implica ejecutar la red neural de cada genoma 1.166.400 veces, lo que tarda un buen rato, y de momento no he conseguido paralelizarlo.

Aunque las imágenes generadas durante esa evolución no me han interesado demasiado, he recogido unas cuántas de ellas en el siguiente vídeo:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s