Simple experiment about neuroevolution (NEAT-Python)

The next video, that shows about 166 generations of the evolving neural networks, clarifies the situation enough so I can explain myself later:

I’m interested in programming above all because of artificial intelligence and videogames. Although I consider myself a writer first, another one of my dreams, shared with many programmers of modern videogames, consists on making a game with the best of Dwarf Fortress, but with the more immediate and exploratory aspects of games like Cataclysm: Dark Days AheadRimworld’s ambience comes somewhat close to what I would want, but I’d prefer a complexity closer to that of Dwarf Fortress, with most of its elements depending on procedural generation, and supported with an artificial intelligence based on neural networks that would offer constants surprises.

To prove to myself that I could program the visual aspect of a similar game and set the basis for developing the intelligence of its actors, I intended to develop the prototype shown in the video. For now I’ve failed in generating the behaviors that I wanted for the involved neural networks, but having reached this point allows me to progress quickly.

For those who don’t know it, and according to the story as I remember it, neural networks were considered the Holy Grail of artificial intelligence in the eighties and early nineties, but they crashed against an unsolvable problem: no mathematical model could determine which was the best architecture to use for a network to solve a particular problem. They depended on trial and error, and eventually neural networks ended up relegated to obscurity for the most theory-minded and a minority of dedicated programmers.

But in 2002, Kenneth Stanley, from Texas university in Austin, wrote the following paper:

Evolving Neural Networks through Augmenting Topologies

The paper, and those that followed it, revealed the way to solve the main issue with neural networks: instead of designing its architecture, it should evolve through a genetic algorithm. A significant part of the revolution in artificial intelligence we are living in has its origin in papers like this one and others from that era.

The prototype I intended to build had to implement the the following elements:

  • The visual aspect of games like Dwarf Fortress (with tilesets) and Cataclysm: Dark Days Ahead.
  • A reusable architecture that would allow adding new features and programming other experiments easily
  • It would implement the neuroevolution using some library based on NEAT
  • The neural networks should evolve a behavior close to what I intended

Visual representation of a neural network:

neuralnetwork.jpeg

A neuroevolution tends to begin with only the input and output layers set. The inputs represent the sensorial information that a neural network would process, and the outputs the answers that the internal architecture generates through the interaction of all the nodes.

The success of this method depends mainly on the following factors: the inputs must feed the network with the relevant information that could end up producing the intended behavior, and the inputs should be normalized (should be scaled to a range of 0.0 to 1.0). For my experiment I settled on the following inputs:

  1. The normalized value of each turtle’s health
  2. A value of 1.0 if the animal detects a fruit close enough in the northwest, but 0.0 otherwise.
  3. Same but in the north
  4. Same but in the northeast
  5. Same but in the east
  6. Same but in the southeast
  7. Same but in the south
  8. Same but in the southwest
  9. Same but in the west

I decided that each actor would act depending on which output had produced the highest value, and according to its index, the actor would walk a tile over to one of the cardinal directions or it would stay in place.

I chose those inputs because I considered that an actor should learn to link his health deteriorating quickly to the need to search for food, and the actor should detect the fruits instead of stumbling in the dark.

Apart from the architecture of the network, the other key is the function that determines each neural network’s fitness. The fitness is a mathematical measure of how close the network has gotten to the goal. Usually it consists in reaching a high number. In my case I settled for the following function:

((Health ^ 2) + (AmountOfFruitsEaten * 50) + (TurnsSpentNearFood * 2)

I wanted to reward the actors that kept their health as high as possible, and as secundary measures I wanted to suggest that they should look for food and keep close. I’m terrible at math and I’m doing this alone, so suggestions are welcome.

For now the experiment hasn’t produced the behaviors I intended. I’ll leave it some night so it can reach a thousand or thousands of generations, but at least I’m happy that it’s built upon a platform that could allow me to move towards programming something close to an interesting videogame or simulation.

UPDATE: I’ve changed some aspects of the experiments and gotten results close enough to what I intended. I’ll write another post showing them.

Experimento simple sobre la neuroevolución (NEAT-Python)

El siguiente vídeo, que recoge unas 166 generaciones de las redes neurales que evolucionaban, ilustra la situación lo suficiente como para que me explique después:

Me interesa la programación sobre todo por la inteligencia artificial y los videojuegos. Aunque me considero primero un escritor, otro de mis sueños, compartido con muchísimos programadores de videojuegos modernos, era crear un juego que recogiera lo mejor de Dwarf Fortress, pero con los aspectos más inmediatos y exploratorios de juegos como Cataclysm: Dark Days Ahead. La ambientación de Rimworld recoge parte de la idea, pero yo querría una complejidad mucho más cercana a Dwarf Fortress, con la mayor cantidad de elementos basados en la generación procedural, y una inteligencia artificial fundada en las redes neurales que ofreciera sorpresas constantes.

Para probar a mí mismo que podría programar el aspecto visual de un juego semejante y establecer la base para desarrollar las inteligencias de sus actores, pretendí desarrollar el prototipo que se muestra en el vídeo. De momento he fracasado en generar los comportamientos que pretendía para las redes neurales involucradas, pero haber llegado hasta este punto me permite progresar deprisa.

Para quienes lo desconozcan, y de acuerdo con la historia tal como la recuerdo, las redes neurales se consideraban el Santo Grial de la inteligencia artificial en los años ochenta y principios de los noventa, pero se toparon con un problema insalvable entonces: no existía ningún modelo matemático que determinara cuál era la mejor arquitectura de cada red neural para resolver los problemas concretos. Que dependieran del ensayo y error acabó relegando las redes neurales a los ámbitos más teóricos o a una minoría de programadores dedicados.

Pero en 2002, Kenneth Stanley, de la universidad de Texas en Austin, sacó este artículo académico:

Evolving Neural Networks through Augmenting Topologies

El artículo, y los que se sucedieron, revelaron la manera de solventar el problema principal de las redes neurales: en vez de diseñar su arquitectura, debería evolucionar mediante un algoritmo genético. Una parte significativa de la revolución en inteligencia artificial que vivimos durante estos días tiene su origen en este artículo y en otros de esa época.

El prototipo que yo pretendía construir debía implementar los siguientes elementos:

  • El aspecto visual de juegos como Dwarf Fortress (con tilesets) y Cataclysm: Dark Days Ahead
  • Una arquitectura reusable para que tanto añadir nuevos elementos como programar experimentos adicionales fuera razonablemente fácil
  • Implementar la neuroevolución con alguna librería de NEAT
  • Que las redes neurales evolucionaran un comportamiento cercano a lo que quería

Representación visual de una red neural:

neuralnetwork.jpeg

La neuroevolución suele empezar sólo con la capa de inputs y la de outputs. Los inputs representan la información sensorial que una red neural recogería, y el output la respuesta que la arquitectura interna genera mediante la interacción de todos los nodos.

Con respecto a la arquitectura, que una neuroevolución funcione bien depende en gran medida de los siguientes factores: que los inputs recojan la información relevante para generar los comportamientos queridos y que estén bien normalizados (reducirlos proporcionalmente a rangos como de 0.0 a 1.0). Para mi experimento decidí los siguientes inputs:

  1. El valor normalizado de la salud de esa tortuga.
  2. Valor de 1.0 si ve una fruta en el noroeste (en las cuatro casillas más cercanas), 0.0 en caso contrario
  3. Lo mismo pero en el norte
  4. Lo mismo pero en el noreste
  5. Lo mismo pero en el este
  6. Lo mismo pero en el sureste
  7. Lo mismo pero en el sur
  8. Lo mismo pero en el suroeste
  9. Lo mismo pero en el oeste

Decidí que cada actor actuaría en función de qué output había recibido el valor más alto, y dependiendo de cuál se tratara, avanzaría una casilla en una dirección cardinal o se quedaría quieto.

Opté por esos inputs porque consideré que un actor debería aprender a relacionar que su salud se deterioraba rápidamente con la necesidad de buscar comida, y necesitaba poder detectar las frutas para que topar con ellas no fuera una coincidencia.

Aparte de la arquitectura de la red neural, la otra pieza fundamental es la función que determina el fitness de cada red neural. El fitness consiste en un valor que calcula matemáticamente cuánto se ha acercado a cumplir la meta. Por lo general suele consistir en intentar alcanzar un valor alto. En mi caso me decidí por la siguiente función:

((Salud) ^ 2) + (CantidadDeFrutasComidas * 50) + (TurnosPasadosCercaDeFruta * 2)

Quería premiar a los actores que mantuvieran la salud lo más llena posible, pero también pretendía sugerir que debían buscar comida activamente y no alejarse demasiado de ella. Soy pésimo con las matemáticas y programo solo, así que se admiten sugerencias.

De momento el experimento no ha sacado los comportamientos que quería. Lo dejaré alguna noche para que cumpla mil o miles de generaciones, pero al menos me alegra que se sostenga sobre una plataforma que me permitirá avanzar hacia programar algo cercano a un videojuego interesante.